
1. Introduction
This document describes the “CLCKD” (or “Consensus-Protocol 
Ledger-Based CRYSTALS-Kyber/Dilithium”) key agreement 
protocol. CLCKD allows forward secrecy and secure signatures 
using CRYSTALS-Dilithium signatures  and CRYSTALS-Kyber 1

post-quantum key encapsulation.  CLCKD provides a distributed 2

ledger of authenticated ephemeral public keys allowing two 
parties to mutually authenticate each other based on constantly 
updating one-time public keys maintained on an XMSS distributed 
ledger.  CLCKD provides post-quantum forward secrecy, while 3

adding a post-quantum secure signature scheme for 
authentication and non-repudiation where both parties are using 
CLCKD, or interoperability and post-quantum forward secrecy 
without authentication and non-repudiation when only the 
recipient is using CLCKD.

CLCKD is designed for asynchronous settings where one user 
(“Bob”) is offline but has published some information to a 
distributed environment. Another user (“Alice”) wants to use that 

 CRYSTALS-Dilithium is lattice-based signature scheme using the hardness of Module-SIS 1

and Module-LWE that offers speed and size advantages over hash-based schemes. The 
National Institute of Standards and Technology (NIST) tested and approved CRYSTALS-
Dilithium as a quantum-resistant signature scheme (https://www.nist.gov/news-events/news/
2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms). For further 
information on CRYSTALS-Dilithium, see: https://pq-crystals.org/dilithium/index.shtml.

 CRYSTALS-Kyber is an IND-CCA2-secure key encapsulation mechanism (KEM), whose 2

security is based on the hardness of solving the learning-with-errors (LWE) problem over 
module lattices. The National Institute of Standards and Technology (NIST) tested and 
approved CRYSTALS-Kyber as a quantum-resistant encryption scheme (https://www.nist.gov/
news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-
algorithms). For further information on CRYSTALS-Kyber, see: https://pq-crystals.org/kyber/
data/kyber-specification-round3-20210804.pdf

 XMSS, also known as RFC 8391, is publicly explained at: https://www.rfc-editor.org/info/3

rfc8391. The National Institute of Standards and Technology (NIST) approved RFC 8391 in 
Special Publication 800-208. XMSS is considered quantum-secure by NIST; the conditions for 
this consideration are discussed in the original research paper above.

https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf


information to send encrypted data to Bob, using a one-time 
public key recorded to a constantly updating and verifying ledger.

2. Preliminaries
2.1. CLCKD parameters
An application using CLCKD must decide on several parameters:

Name Definition

HashTree WOTS+ key pairs combined under a 
single public key (currently, XMSS, which 
is RFC 8391 compliant)

hash A lattice-based Fiat-Shamir signature 
scheme (currently, CRYSTALS Dilithium, 
which is FIPS-204 compliant)

pqkem An IND-CCA post-quantum key 
encapsulation mechanism (currently, 
CRYSTALS-Kyber-1024, which is 
FIPS-203 compliant)

pqae A scheme for authenticated encryption 
that has IND-CPA and INT-CTXT post-
quantum security



2.2. Cryptographic notation
Throughout this document, all public keys have a corresponding 
private key, but to simplify descriptions we will identify key pairs 
by the public key and assume that the corresponding private key 
can be accessed by the key owner. 

This document will use the following notation:

• The concatenation of byte sequences X and Y is X || Y.

• PQ(PK1, PK2) represents a byte sequence which is the 
shared secret output from a post-quantum hash tree 
involving the key pairs represented by public keys PK1 and 
PK2. The post-quantum hash tree will be XMSS.

dag A Directed Acyclic Graph that ties 
ephemeral pqkem public keys to a root 
user whose identity is proven yet 
obfuscated using zero-knowledge proofs 
(currently, SABRkey)

consenuspro A decentralized protocol for verifying the 
integrity and non-repudiation of pqkem
(currently, SABR-PAXOS)

EncodeKEM A function that encodes a pqkem public 
key into a byte sequence

DecodeKEM A function that decodes a byte sequence 
into a pqkem public key and is the 
inverse of EncodeKEM



• Sig(PK, M, Z) represents the byte sequence that is an 
XMSS signature on the byte sequence M which was created 
by signing M with PK’s corresponding private key. This 
signature verifies with public key PK and the public key is 
recorded to distributed ledger Z. The signing and verification 
methods and security of XMSS are well-documented in RFC 
8391.4

• IK(a, b) represents the identity keys for ledger users. These 
identity keys create the ledger root for each user, but aside 
from the on-ledger identification they have no association 
with PQ or SIG. 

2.3. Roles
The CLCKD protocol involves three parties: Alice (sender), Bob 
(receiver), and a Distributed Ledger.

• Alice wants to send Bob some initial data using encryption.

• Bob wants to allow parties like Alice to send him encrypted 
data. However, Bob might be offline when Alice attempts to 
do this. To enable this, Bob has a relationship with a 
Distributed Ledger.

• The Distributed Ledger stores pointers to distributed file 
shards that are non-computationally derived using an 
algorithm with information theoretic security  from Alice to 5

Bob which Bob can later retrieve. The Distributed Ledger 
also lets Bob publish some data which the distributed ledger 

 RFC 8391 is publicly available at: https://www.rfc-editor.org/info/rfc8391. National Institute of 4

Standards and Technology approved RFC 8391 in Special Publication 800-208. 

 The mathematical proofs for the data-at-rest information theoretic security algorithm are 5

outside the scope of this paper, which is focused on data-in-transit protocols. For the 
mathematical proof of the data-at-rest protocol, see the SECURA paper at https://
www.beskarinc.com/research/.



will provide to parties like Alice. The distributed ledger is 
inherently untrusted, but PQ and SIG are continuously and 
rapidly validated using a decentralized protocol for verifying 
integrity and non-repudiation (parameter: consensuspro; 
see 4.7 below). 

2.4. XMSS
CLCKD records the following information to the Hash Tree, 
eXtended Merkle Signature Scheme (XMSS):

Bob has a signed ephemeral key EKB, which is automatically 
updated each time that a message is received by Bob. For each 
signed ephemeral and disposable key, K, that Bob generates, he 
also computes a disposition marker, KDB, that uniquely identifies 
this key on Bob’s device and to any sender. These keys and 
distribution markers will be uploaded to the distributed ledger as 
described in Section 3.2.

During each protocol run, Alice retrieves and a new ephemeral 
public key for Bob. Once the protocol is run, the disposition 
marker for KDB is marked as expired and the key is no longer 
considered valid by consensuspro.

Name Definition

EKB Bob’s ephemeral public key

KDB The disposition marker for 
ephemeral key EKB



2.5. Post-Quantum Key 
Encapsulation Keys
CLCKD uses the following post-quantum key encapsulation public 
keys:

The post-quantum key encapsulation mechanism's (parameter: 
pqkem) public keys used within a CLCKD protocol run must all 
use the same pqkem parameter.

For each communication round, Bob generates a one-time pqkem 
(PQOPKB1, PQOPKB2, …) which is tied to Bob’s directed acyclic 
graph root identity key (IKB), using zero-knowledge proofs, and 
which is used in a single CLCKD protocol run. These keys and 
their corresponding identifiers will be uploaded to the distributed 
ledger as described in Section 3.2.

3. The CLCKD protocol
3.1. Overview
CLCKD has four phases:

1. Publication: Bob publishes his ephemeral public key and 
key distribution marker to a distributed ledger, recorded in 
XMSS.

Name Definition

(PQOPKB1, PQOPKB2, …) Bob’s set of signed one-time 
pqkem keys



2. Fetching: Alice fetches the most current public key from the 
distributed ledger and uses it to send an initial message to 
Bob. 

3. Key Expiration: Consensuspro marks the used public key 
as expired and prompts Bob to generate a new public key.

4. Key Updating: Bob receives and processes Alice’s initial 
message and generates a new public key and key 
distribution marker.

The following sections explain these phases.

3.2. Publishing keys
Bob generates and publishes a key package to a distributed 
ledger containing:

• Bob’s obfuscated identification key
• Bob’s one-time public key, EncodeKEM
• The key identifier for the one-time public key, KDB

Bob will upload a new public key and key identifier after receiving 
a communication. Bob will discard the private key after a new key 
pair and key identifier have been identified, storing the contents of 
the message using a data-at-rest protocol.6

3.3. Sending the initial message
To perform a CLCKD key agreement with Bob, Alice contacts the 
distributed ledger and fetches the most current public key for Bob 
containing the following values

 See https://www.beskarinc.com/research/ for the mathematical proof of SECURA, one 6

example of a data-at-rest protocol.  

https://www.beskarinc.com/research/


• Bob’s ephemeral public key (EKB)
• The one-time disposition marker for EKB, KDB

The ledger will provide the most current one-time public key for 
Bob, prompt Bob’s account to automatically generate a new one-
time key pair, and alert the ledger to the fact that EKB is no longer 
a valid public key.

Alice verifies the disposition marker on the public key. If the 
disposition marker fails to validate, the protocol aborts the 
communication. Otherwise, if the disposition marker checks pass, 
Alice generates an encapsulated shared secret using our post-
quantum key encapsulation mechanism (parameter: pqkem):

    (CT, SS) = PQKEM-ENC(PQPKB)
               shared secret SS
               ciphertext CT

If both sender and recipient are using the CLCKD protocol, Alice 
creates hash PH by hashing the contents of the message and 
signing the message using a post-quantum signature scheme, 
CRYSTALS Dilithium. Although XMSS could accept a classical 
signature scheme, XMSS is inherently post-quantum.  Therefore, 
post-quantum signatures are used for interoperability. 
Furthermore, if the message needs to be verified, or the sender 
authenticated outside of the environment containing the 
distributed ledger, post-quantum signatures ensure 
interoperability.

Alice then sends Bob an initial message containing:

• The pqkem ciphertext CT encapsulating SS for PQPKB

• The identifier, KDB, stating which one-time key Alice used



• An initial ciphertext encrypted with a PQAE encryption 
scheme.

• If Alice is also using CLCKD, a CRYSTALS Dilithium hash 
and signature verifying the authenticity of Alice and the non-
repudiation of the message.

The initial message must be encoded in an unambiguous format 
to avoid confusion of the message items by the recipient.

After sending this, the CLCKD protocol deletes the ciphertext CT 
and message hash PH.

3.4. Receiving the initial message
Upon receiving Alice’s message, Bob retrieves the disposition 
marker from the message, indicating the corresponding private 
key that Bob should use to decrypt the message.

Using these keys, Bob calculates PQKEM-DEC(PQPKB, CT) as 
the shared secret SS.

Bob also generates and publishes a new key package as 
described in Section 3.2

4. Security considerations
CLCKD has been formally analyzed in the symbolic model with 
ProVerif and in the computational model with CryptoVerif. With 
ProVerif, the authors prove both authentication and secrecy in the 
symbolic model and enumerate the precise conditions under 
which the attacker can break these properties. These security 
properties notably imply forward secrecy, resistance to harvest 



now decrypt later attacks, resistance to key compromise 
impersonation, and session independence.

Using the CryptoVerif prover, the authors prove the computational 
secrecy and authentication of any completed key exchange for 
XMSS hashes, the hash function modeled as a random oracle, 
and the IND-CPA+INT-CTXT assumptions for the PQAE. 
Moreover, they also show forward secrecy when the signature 
was UF-CMA secure at the time the key exchange took place, 
assuming post-quantum IND-CCA security for the KEM, modeling 
the hash function as a PRF, and IND-CPA+INT-CTXT security for 
the PQAE.

The remainder of this section discusses a list of known security 
considerations.

4.1. Authentication and Non-
Repudiation
A message sent using the CLCKD protocol where both Alice and 
Bob communicate using the CLCKD communication protocol, 
authenticates the communication by appending to each 
communication a lattice-based Fiat-Shamir hash and signature 
developed from IKA or IKB.  This method allows for non-repudiation 7

of the communication. When only one party to the 
communication, Alice or Bob, sends a communication via the 
SABRkey communication API, the communication loses 
authentication and non-repudiation. If authentication is not 
performed, the parties receive no cryptographic guarantee as to 

 Fiat-Shamir heuristics are beyond the scope of this paper, but are available in the original 7

proposal at https://link.springer.com/chapter/10.1007/3-540-47721-7_12. The original proposal 
failed to include a proof of security; Pointcheval and Stern later provided this proof, given a 
random oracle, at: https://link.springer.com/chapter/10.1007/3-540-68339-9_33

https://link.springer.com/chapter/10.1007/3-540-68339-9_33


with whom they are communicating. The methods by which 
authentication and non-repudiation are applied are discussed in 
Section 3.3.

Authentication in CLCKD is only quantum-secure when both the 
sender and the receiver use the CLCKD communication API or a 
similar post-quantum authentication protocol. CLCKD, through 
decentralized ledger entries, is designed to be interoperable with 
any other post-quantum system using Crystals-Kyber KEM, such 
as PQ3/PQ4. 

4.2. Protocol replay
It is possible that an adversary could send multiple encrypted 
messages to Bob before KDB and EKB are updated on the 
distributed ledger. This replay attack will be accepted, causing 
Bob to think Alice had sent him the same message (or messages) 
repeatedly.

To mitigate this, the distributed ledger uses a patented fast-
consensus decentralized protocol. The details of this fast-
consensus protocol are beyond the scope of this paper.  In 8

testing, the fast-consensus protocol processed over 1,000,000 
communications per second using commonly-available computer 
hardware. The speed and scalability of the ledger in real-world 
scenarios remains unknown, but is assumed to be slower than the 
testing environment due to competing server processor demands, 
bandwidth delays, and simultaneous memory requests. The 
specific details of the ledger and its computational testing results 
are beyond the scope of this document but research results are 

 For further information on the SABR-PAXOS fast-consensus protocol, see https://8

www.beskarinc.com/research/.



publicly available in Quantum-Secured Decentralized Directed 
Acyclic Graphs.

4.3. Deniability
CLCKD intentionally does not provide cryptographic deniability in 
the face of a third party with access to a communication party’s 
secret keys. While a third party cannot determine from ciphertext 
that Alice and Bob communicated, and cannot determine the 
contents of their conversation, all communications within CLCKD 
are purposefully hashed and signed to provide authentication and 
non-repudiation (see 4.1 above). However, to provide 
authentication and non-repudiation, a third party still needs 
access to plaintext, which requires that the third party have 
access to one or more party’s secret keys and is presented with a 
transcript created by communication between Alice and Bob. In 
the absence of this scenario (i.e., the third party has access to 
neither Alice’s nor Bob’s secret keys), offline deniability is 
accomplished.

Similar to other post-quantum communication protocols, we focus 
on offline deniability because if either party is collaborating with a 
third party during protocol execution, they will be able to provide 
proof of their communication to such a third party. 

In the absence of a cooperating party or a third party having 
access to Alice or Bob’s secret keys, the deniability of 
communications is assumed to be limited by the underlying 
hardness of the Pedersen commitment. While discrete logarithms 
are assumed to be classically secure, they are also assumed to 
be breakable through quantum computation.  In CLCKD, the post-9

 See https://arxiv.org/pdf/2307.03065.pdf for the susceptibility of discrete logarithms to 9

quantum computational decryption.



quantum value v of C = vG + rH, where G and H are known 
generator points on an elliptic curve, creates a level of post-
quantum deniability as there is no known algorithm that can 
determine the plaintext version of v.  However, we assume that 10

an attacker using a post-quantum computer could determine the 
ciphertext of v (Vc) and then compare that value to all other Vc on 
a distributed ledger. An uncomputable but non-zero level of 
deniability is still available to the user based on the fact that 
computing Vc, even with a quantum computer, is computationally 
impractical.11

4.4. Key compromise
Unique to CLCKD, compromise of a private key only affects a 
single communication round (or trivial set of rounds) between 
Alice and Bob. The specific methods by which these private keys 
are unlocked depends on the authentication protocol of the 
underlying system using the CLCKD protocol.12

4.5. Passive quantum adversaries
CLCKD is designed to prevent “harvest now, decrypt later” attacks 
by adversaries with access to a quantum computer capable of 
computing discrete logarithms in curve. While this security is 
primarily derived from pqkem, it also requires that pqae provides 
post-quantum IND-CPA and INT-CTXT security. Unique to 

 V is computationally determined by pqkem.10

 CLCKD uses a bit size exceeding the ability of the fastest known classical processor on 11

Earth (Frontier, at 1.2 exaFLOPS) to resolve a secret (theoretically assuming a similar device 
was capable of processing in qubits, which Frontier can not) for the remaining lifetime of the 
Earth.

 For further reading on one such system, see the IDENTICO authentication protocol, available 12

at https://www.beskarinc.com/products/.



CLCKD, the rapid replacement of one-time key pairs allows a 
unique level of protection from passive quantum adversaries 
without the need for additional considerations.

4.6. Active quantum adversaries
CLCKD is designed to provide protection against active quantum 
attackers through one-time keys authentication of each message 
(see 4.1 above). An active attacker with access to a quantum 
computer capable of computing discrete logarithms in curve could 
not overcome the authentication of the message.

4.7. Distributed Ledger Trust
Although the specifics of the directed acyclic graph used by 
CLCKD and its related fast-consensus protocol are beyond the 
scope of this paper, the ledger is purposefully designed to be 
untrusted. However, the consensus results are provably trusted 
based on proposal u being the value with the highest proposal 
number among all responses that process P receives from the 
processes of accepting a strict majority of proposals m and u.13

4.8. Risks of weak randomness 
sources
The security of PQKEM relies on the random sources available 
when running the PQKEM-ENC operation. If a user has weak 
entropy then the resulting PQKEM will have low entropy. To 
mitigate a weak randomness issue, we recommend a 

 For further information, see the mathematical proof of SABR-PAXOS, available at https://13

www.beskarinc.com/research/.



cryptographically secure pseudorandom number generator 
seeded with an external source of entropy such as /dev/urandom 
in Linux distributions.

4.9 Preventing KEM Re-
encapsulation Attacks
Kyber KEM incorporates the KEM public key into the generation 
of the shared secret, preventing KEM Re-encapsulation attacks. 
Any derivation from FIPS-103 is assumed to no longer be 
compatible with the CLCKD protocol.

5. IPR
This document is hereby placed in the public domain.

6. Acknowledgements
The CLCKD protocol was developed by Daniel Chapple.

Thank you to Nicholas Grokhowsky, a doctoral candidate at  
North Carolina State University's Center for Geospatial Analytics, 
for his editorial feedback.

Thanks to the Kyber team for their work on the Kyber key 
encapsulation mechanism.


