
1. Introduction
This document provides a simplified proof of the consensus
algorithm SABR-Paxos. SABR-Paxos provides rapid and 1

scalable consensus in a decentralized (i.e., leaderless) and
asynchronous environment, assuming the presence of a
persistent advanced threat.

As the number of processes running a proposal in SABR-Paxos is
potentially infinite, the mathematical proof of SABR-Paxos relies
on set theory. Consequently, the authors presume that the reader
is familiar with set theory.

2. Preliminaries
2.1. SABR-Paxos parameters
An application using SABR-Paxos must decide on several
parameters:

Name Definition

Proposal A value (i, j) that is nominated as true

Process A run N of the SABR-Paxos protocol

 The proofs in this paper are written in pseudocode and monospaced unicode, instead of 1
TLA+, to make the paper as widely accessible as possible. However, any reader familiar
with TLA+ could easily convert the proofs in this document to TLA+.

3. Definitions
The Paxos Protocol (classic Paxos) relies on two definitions:

• DEF1: Proposal v is accepted iff it is accepted by at least one N.

• DEF2: Proposal v is chosen iff it is accepted by a strict majority
of N.

In Section 4, we prove a modified version of the first of these
definitions as DEF3A. The authors acknowledge that the proof of
Paxos has been achieved many times before, but the proof of
DEF1 is important for understanding SABR-Paxos.

DEF1 and DEF2 imply an inherent problem with Paxos that
SABR-Paxos solves. The above definitions do not apply a
solution if a strict majority of processors cannot agree on a
proposal (i.e., dueling leaders); essentially, the FLP impossibility.
Multi-Paxos solves this problem by assigning a stable leader/
distinguished proposer, but this introduces centralization and
places a large (theoretically infinite) demand for process
instances on the leader.

Consenus Agreement on the proposal

Node An instance connected to SABR-Paxos

the upper bound on the communication
delay between any two correct machines

Timeout ▵

Egalitarian-Paxos (EPaxos) removed the requirement for a stable
leader by attaching ordering constraints to an instance. However,
EPaxos 1) required a consistent message delivery order for
conflicting messages and 2) failed to track the last proposal.
EPaxos is also susceptible to a Finney Attack as the initial
proposer is the leader.

SABR-Paxos removes the constraint of a consistent message
delivery order by introducing tolerance of Byzantine faults in
combination with network asynchrony, as long as a majority of
replicas are correct and communicate synchronously. SABR-
Paxos assigns a random acceptor as the leader for each N, but
does not require that the leader is consistent beyond each N (see
Section 6.2).

Consequently, SABR-Paxos achieves decentralized (i.e.,
leaderless) consensus as long as no more than nodes are
hostile, producing the following definitions: 2

• DEF3A: Proposal v with timestamp T from N1 is accepted iff it
does not contradict at least one other proposal (m, u) with
timestamp T.

• DEF3B: Proposal v with timestamp T from N1 is chosen iff it is
accepted by a strict majority of N in operation during timeout .

Similar to EPaxos, SABR-Paxos has a fast path for consensus
when there is no competing proposal, although SABR-Paxos
adds a last proposal identification derived from timestamp T to

n − 1
2

∧

▵

 The bound of is the general consensus limit; no algorithm can mathematically produce 2

consensus outside of this bound.

n − 1
2

ensure security. However, SABR-Paxos also assumes a
persistent advanced threat to participants, deviating from
Egalitarian Paxos in the slow path where it is assumed that an
adversary is controlling nodes and the message delivery
schedule across the entire network.

4. The SABR-Paxos Proof
4.1 Proof for DEF3A:

For any X arbitrary set of value x

 Any finite set of acceptors N:

Next

Theorems:

The first theorem states that the set of i is less than or equal to 1.
This allows empty sets, but precludes a set greater than 1,
meaning that the desired set may contain, at most, one value.
Establishing this parameter allows us to perform calculations
using the second theorem.

For the second theorem, if i and j are far from each other in state
space, then we immediately apply NEXT. if i1 = j1 - 1, NEXT does
not hold for i, j, concluding the proof.

For the next theorems, SABR-Paxos must achieve consensus in
a byzantine-fault environment:

n − 1
2

∧

≡ set = {} ∧ ∃ ∨ ∈ arbitary_set: set′ = { ∨ }

∀i : |set_ i | ≤ 1

∧ ∀i, j: i ≤ j ∧ (set_ i ≠ V ⇒ set_ i = set_ j)

4.2 Proof for DEF3B:

For any X arbitrary set of value x

 Any finite set of acceptors N

 Last proposal P

 Message m

 Acceptor a

 Set msg of all m sent until timeout :

Round1(ballot)

m(message, ballot, T)

 max_ballot’ = max_ballot

 P’ = P

 T timeNow

 T

Round2a(ballot)

 m msg:

Round1 max_ballot(Round1) Round1(ballot)

 max_ballot’ = a1 acceptors: if a = a1

then m(ballot) - 1

else max_ballot (Round1)

 P’ = P

 m2(message, ballot, T, P)

∧

∧

∧

∧

∧ ▵

≡

∧

∧

∧ ≮

∧ ≤ ▵

≡

∃ ∈

∧ <

∧ ⋋ ∈

∧

∧

Round2b(ballot b, vote)

 m msg:

Round2a m(ballot).= b

 quorum all_ quorums:

let

quorum_msg { m msg: m2 m(ballot).= b m(acc) quorum

quorum_votes { m quorum_msgs: m(vote) null }

in

 a quorum: m quorum_msgs: m(acc) = a

 (

 quorum_votes = {}

 m quorum_votes: m(vote) = v

 m(Round1) quorum_votes: m(Round1(vote)) m(vote)

 m2(ballot, v)

)

 max_ballot’ = max_ballot

 P’ = P

 T timeNow

 T

Round2c(ballot)

 m msg:

Round1 max_ballot(Round1) Round1(ballot)

≡

∃ ∈

∧

∧ ∃ ∈

≡ ∈ ∧ ∧ ∈

≡ ∈ ≠

∀ ∈ ∃ ∈

∧

∨ ∃ ∈

∧ ∀ ∈ < =

∧

∧

∧

∧ ≮

∧ ≤ ▵

≡

∃ ∈

∧ <

 max_ballot’ = a1 acceptors: if a = a1 then m(ballot) else max_ballot(a1)

 P’ = a1 acceptors: if a = a1

then {m(ballot), m(v)}

else P(a1)

 m3(ballot, v, a, T)

Round1 represents an opening proposal, including a ballot
number, timestamp, and last proposal identifier (which was
missing in EPaxos).

Round2a represents a random acceptor receiving Round1. If the
acceptor can vote in the ballot (i.e., it has not already sent its last
proposal for the ballot), it replies with P. If the acceptor has
already moved beyond the ballot round, Round1 is ignored.

In Round2a, the first node receiving the opening proposal is
selected to be the leader. If a proposal fails to achieve consensus,
the leader selection for the round is irrelevant; wlog, the proof of
leader selection validity is contained in DEF3B.

Round2b ensures that 2a is not already started to prevent the
same process for different values. This round requires that the
ballot leader (the proposer of Round1) be stable throughout the N.
All Round 2b messages are collected from the quorum of nodes.
Quorum members increase max_ballot before sending m2,
preventing voting in earlier ballots. The value of v is safe if the
whole quorum has not voted yet or if it is the latest vote of a
quorum member. As long as v is safe, message 2 is broadcast.

Round 2c looks similar to Round 2a, with the important distinction
that Round 2c is the acceptance round. The authors highlighted
the difference between Round 2a and Round 2c with red text to

∧ ⋋ ∈

∧ ⋋ ∈

∧

clarify the difference. Round 2c confirms that P is valid and, if so,
accepts the votes for v.

5. Limitions
SABR-Paxos cannot reach valid consensus if more than are
hostile during timeout .

6. Attacks and Mitigations
The classic problem with decentralized confirmation that Satoshi
Nakomoto solved with bitcoin is the double-spend problem. For
example, while the classic example is that Bob buys something in
transaction Y with funds A and then transfers funds A into a
separate account controlled by Bob before Y is confirmed, Y will
not be confirmed and Bob has effectively bought something for
free. While often considered in terms of currency, double-spends
are a problem for any record that attempts to determine truth. For
example, a person could have multiple identities, or multiple
encryption pairs, held on a ledger. In centralized ledgers (like SQL
servers) the double spend problem is prevented by a controlling
authority determining what is valid or invalid. In decentralized
ledgers, the majority of participants decide.

SABR-Paxos reaches consensus quickly, resolving some double-
spend concerns, but their are two attacks possible on any
decentralized ledger that are also applicable to SABR-Paxos:
Race Attacks and Finney Attacks.

6.1 Race Attack

n − 1
2

▵

A race attack occurs when two communications on a ledger, one
valid and the other invalid, are sent at almost the same time, with
the possibility that an invalid communication may race to
confirmation before a valid confirmation. From the proofs above,
each confirmation is ordered by timestamp and confirmed
asynchronously, negating the possibility of a Race Attack as long
as a user, as a business rule, does not accept an
unconfirmed communication.

6.2 Finney Attack

A Finney Attack occurs when the proposer of a communication
controls the consensus approver. EPaxos is uniquely vulnerable
to this attack as the proposer is also the leader. However, SABR-
PAXOS mitigates this attack by assigning the leader to a random
acceptor. As long as the pool of participants is sufficiently large to
prevent control of a proposer and acceptor by the same entity, a
Finney Attack is not possible.

7. IPR
This document is hereby placed in the public domain.

8. Acknowledgements
Thanks to Leslie Lamport for inventing the Paxos protocol, upon
whose work much of the SABR-Paxos protocol is based. Thanks
to Iulian Moraru, David G. Andersen, and Michael Kaminsky for
inventing Egalitarian Paxos. Thanks to Pierre Sutra for
demonstrating the flaw with Egalitarian Paxos. Thanks to
Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quema, Marko
Vukolic for inventing XPaxos, an XFT SMR protocol. Thanks to
Pasindu Tennage, Cristina Basescu, Eleftherios Kokoris Kogias,

Ewa Syta, Philipp Jovanovic, and Bryan Ford for inventing Baxos
and demonstrating the utility of a Random Exponential Backoff to
distributed consensus.

